About GCNI

Research Lab

Research Topics

We study the biological mechanisms behind heritable psychiatric disorders like schizophrenia, bipolar disorder, and autism spectrum disorder (ASD). Our goal is to find new ways to understand, classify, and treat these brain disorders.

These disorders have strong heritable causes but are characterized as pathologies of the mind. Traditional research methods struggle to study the biological mechanisms behind subjective clinical measures. Our research uses electrical profiles of brain networks to objectively classify perception and cognitive processes. We combine computational models with observations to analyze neuropathological dynamics in humans and mice. Our recent work has established single-cell resolution circuit pathologies in ASD mouse models across multiple brain regions.

We bridge understanding from genetics, molecular pathways, cellular, metabolic, and immunologic factors with clinical observations using this cross-species approach. By combining high-density biological measurements, causal manipulation, and computational modeling, we aim to develop targeted neuropsychiatric diagnostics and treatments.

Our current projects address three key questions:

  1. How do single-cell dynamics link biological mechanisms to circuit pathology and symptoms? Can brain-wide circuit pathologies improve understanding of perception and identify new treatment?
  2. How do external factors like gut microbiomes, sleep abnormalities, and environmental stress influence pathological states and circuit dynamics, and how do these interactions evolve with disease progression and symptoms?
  3. Can artificial intelligence be applied to large digital behavioral datasets to improve asymptomatic brain disorder detection and bio-subtyping of neuropsychiatric disorders in the community?

Selected publications

  1. Bruijns S. A., International Brain Laboratory, Bougrova K, Laranjeira I.C., Lau P. Y. P., Meijer G. T., Miska N. J., Noel J.-P., Pan- Vazquez A., Roth N., Socha K. Z., Urai A. E., Dayan P., Dissecting the Complexities of Learning With Infinite Hidden Markov Models. Nature Neuroscience, (2023, accepted).
  2. Findling C., Hubert F., International Brain Laboratory, Acerbi L., Benson B., Benson J., Birman D., Bonacchi N., Carandini M., Catarino J. A., Chapuis G. A., Churchland A. K., Dan Y., DeWitt E.J., Engel T. A., Fabbri M., Faulkner M., Fiete I. R., Freitas- Silva L., Gerçek B., Harris K. D., Häusser M., Hofer S. B., Hu F., Huntenburg J. M., Khanal A., Krasniak C., Langdon C., Latham P. E., Lau P. Y. P., Mainen Z., Meijer G. T., Miska N. J., Mrsic-Flogel T. D., Noel J.-P., Nylund K., Pan-Vazquez A., Paninski L., Pillow J., Rossant C., Roth N., Schaeffer R., Schartner M., Shi Y., Socha K. Z., Steinmetz N. A., Svoboda K., Tessereau C., Urai A. E., Wells M. J., West S. J., Whiteway M. R., Winter O., Witten I. B., Zador A., Dayan P., Pouget A. Brain-wide representations of prior information in mouse decision-making. Nature, (2023, accepted).
  3. Bafna A., Lau PYP, Banks G., and Nolan PM, Harvesting mouse suprachiasmatic nucleus (SCN) by vibrating microtome for diurnal transcriptome analysis. STAR Protocol, 2023, accepted. International Brain Laboratory, Banga K., et al. “Reproducibility of in-vivo electrophysiological measurements in mice,” bioRxiv, (2022, doi:10.1101/2022.05.09.491042).
  4. Banks G, Guillaumin M, Heise I, Lau P, Yin MH, Bourbia N, Aguilar C, Bowl M, Esapa C, Brown L, Hasan S, Tagliatti E, Nicholson E, Bains RS, Wells S, Vyazovskiy VV, Volynski K, Peirson S. Aberrant synaptic release underlies sleep/wake transition deficits in a mouse Vamp2 mutant. Science Advances, 12 Aug 2020, Vol 6, Issue 33, doi:10.1126/sciadv.abb3567.
  5. Lamsa K, Lau P. Long-term plasticity of hippocampal interneurons during in vivo memory processes. Curr Opin Neurobiol, 2019 Feb;54:20-27, doi:10.1016/j.conb.2018.08.006.